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The perturbed ladder operator method. Perturbed 
eigenvalues and eigenfunctions from finite difference 
considerations 

N Bessis, G Bessis and G Hadinger 
Laboratoire de Spectroscopie thkorique, Universitk Claude Bernard, Lyon I, 43 boulevard 
du 11 novembre 1918,69622 Villeurbanne, France 

Received 12 February 1981, in final form 26 May 1981 

Abstract. The finite difference aspect of the perturbed ladder operator method is rein- 
vestigated. By the use of finite difference calculus, resolution of the factorisability condition 
is achieved, at any order of perturbation, without assuming for the ladder and factorisation 
functions any particular dependence on the quantum number. A novel prxedure  of 
obtaining perturbed eigenfunctions in terms of the unperturbed functions is described. The 
method, which holds for any type of factorisation (types A to F), is applied to resolution of 
the type A wave equation with potential 

m2-a+d2+2dm cos a ( x + p )  

sin2 a ( x  + p )  
~ ( x )  = -a ’ (  +E b,[casa(x + p ) l ” ) .  

s 

The perturbed type A problem, which has not been previously treated, contains, as 
particular cases, the perturbation of the spherical harmonics Y;“ (or generalised Y & )  
functions, of the symmetric top functions and, more generally, of the hypergeometric 
functions F ( a ,  @; y ;  x ) .  

1. Introduction 

The main features of the perturbed ladder operator method have been described in 
previous papers (Bessis et a1 1978, 1980, to be referred to as I and 11). This method, 
which maps the perturbation scheme onto the exact ladder operator formalism, enables 
one to treat non-factorisable Sturm-Liouville eigenequations in the same way as 
factorisable ones and enlarges the field of application of the original Schrodinger, Infeld 
and Hull factorisation method (Schrodinger 1940, 1941, Infeld and Hull 1951). From 
the computational point of view, the critical part of the perturbed ladder scheme is the 
determination of perturbed ladder operators and associated factorisation functions. 
Once the ladder and factorisation ‘functions are determined, one obtains closed form 
expressions for the perturbed eigenfunctions and eigenvalues in terms of the quantum 
numbers of the unperturbed problem without having to calculate any matrix elements 
(see papers I and 11). The unperturbed kernel potential has to be one of the six 
Infeld-Hull exact factorisation types (types A to F). In fact these six types are 
interrelated (Infeld and Hull 1951, Bessis et a1 unpublished) and, by an adequate 
transformation of variable and function, they can be ultimately reduced to two 
fundamental types we shall hereafter distinguish as ‘radial’ types (types B, C, D and F) 
and ‘trigonometric’ types (types A and E). In papers I and 11, particular attention has 
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been paid to the perturbed ‘radial’ types and solutions for these types have been found 
in the case where the required factorising potentials are assumed to involve only 
positive powers of the quantum number. Nevertheless, when the same procedure is 
applied to the ‘trigonometric’ types it leads to intricate calculations and to perturbed 
factorising potentials of restricted physical interest. 

In the present paper, the finite difference aspect of the perturbed ladder operator 
method is re-examined. By the use of finite-difference calculus, the solution of the 
factorisability condition is achieved, at any order of the perturbation, without assuming 
for the ladder and factorisation functions any particular dependence on the quantum 
number. Closed-form expressions of the associated perturbed eigenvalues and 
perturbed ‘key’ eigenfunctions are given. Thus, starting from the perturbed ‘key’ 
function, one can obtain, stepwise, either by the use of the ladder operator or by the use 
of the equivalent three-term recurrence relation (see paper 11), closed-form expressions 
of any perturbed eigenfunction. The procedure is straightforward but becomes some- 
what tedious far from the ‘key’. However, by use of the perturbed ladder function, an 
alternative procedure which leads to closed-form expressions of the perturbed eigen- 
functions in terms of the unperturbed functions is obtained. This is particularly 
recommended when eigenfunctions far from the ‘key’ are needed. All these results, 
which hold for any type of factorisation (types A to F), are described in 82. Particular 
attention is focused on type A (83) which concerns, ex generalis, the perturbation of 
spherical harmonics, symmetric top and hypergeometric F (a ,  p ; y ;  x) functions. 
Because of the existence of interrelation between types of factorisation, one can obtain 
many recurrence relations amongst the eigenfunctions of a given factorisable equation. 
Only those which are required for our calculations are given below. It should be noted 
that these include, as a particular case, recurrence relations between Gegenbauer and 
Jacobi polynomials which have been previously derived by Miller from group theory 
considerations (Miller 1968). As an illustrative example, our procedure is applied, up 
to the second order of the perturbation, to the resolution of the perturbed type A 
eigenequation (84). 

2. The perturbed factorisation scheme 

It is almost unavoidable to recall briefly the exact factorisation scheme and the 
fundamental factorisability conditions, since they are of continual use throughout this 
paper. 

2.1. Exact factorisation 

Let us consider a second-order differential eigenequation which has been reduced to 
the standard form 

d2 -+ U(X,  WZ) + 
(dx2 

associated with the boundary conditions (xl G x -s x2) 
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where m = mo, mo + 1, mo + 2, . , , is a quantum number which takes successive discrete 
values labelling the eigenfunctions. 

Such an equation (1) is factorisable when it can be replaced by each of the following 
two difference differential equations 

where j is the quantum number associated with the eigenvalues Ai, K(x, m)  is the ladder 
function and L(m)  is the factorisation function which does not depend on x. The 
necessary condition for the existence of a quadratically integrable solution of equation 
(l), i.e. the quantification condition, is E (j - Im I) = U = integer 3 0 where E = 1 (or 
E = -1) according to whether L ( m )  is an increasing (or decreasing) function of m. The 
associated eigenvalues are 

A j  =L(~+-$+-$E) .  (4) 
The normalised eigenfunctions (clim are solutions of the following pair of difference 
differential equations 

with 

w , ( m )  = (Ai -L(m))”’. 

These equations allow the determination of any (qm(x) function from the knowledge of 
the ‘key’ function i+bjj(x) which is a solution of the first-order differential equation 

Moreover, it follows immediately from (5) that the +jm functions satisfy the following 
three-term (non-differential) recurrence relation 

(K(x, m)+K(x ,  m + l))4jli,m(X)=w,(m)4j,m-i(x)+Ni(m + l ) $ j , m + l ( X ) *  (7) 

As is well known (Infeld and Hull 1951), there are six fundamental types (denoted 
types A to F) of potential functions U‘O’(x, m) with associated K‘O’(x, m )  and L‘”(m) 
allowing direct factorisation of eigenequation (1) with U(x, m )  = U(O’(x, m )  and leading 
to eigenfunctions +jm(o) which involve classical orthogonal polynomials (Hadinger et a1 
1974). For types A and E, which are of interest to us in the present paper, results are 
collected in table 1. As pointed out by Irifeld and Hull, the factorisation scheme may 
also be extended to solve eigenequation (1) in the case of a potential function V(x, m )  
which differs from U only in its dependence on m. In order to identify V(x, m )  with 
U(x, m), one considers the U(x, m )  potential as ‘embedded’ in a potential function 
u(x, m, p )  which depends on a supplementary ‘artificial’ parameter p such that 
u(x, m, p )  can be identified in m with V(x, m )  and that u(x, m, p = cp(m)) U(x, m ) .  
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Thus the ladder and factorisation functions associated with U (x, m, F )  both depend on 
the parameter p and lead to ,U -parametrised eigenvalues and eigenfunctions. At the 
end of the factorisation scheme one merely sets F = q(m) to obtain the required 
eigenvalues 

A i m = L ( j + $ + $ c ; ~  =q(m)) 

and the required eigenfunctions $im(x, ,U = q(m)). As will be seen in the following 
sections, this 'artificial' or 'embedded' factorisation procedure is very useful in the 
'perturbed ladder' scheme. 

2.2. Factorisability condition of ?he perturbed eigenequation 

In the previous papers I and 11, it has been shown that the original range of applicability 
of the exact factorisation method can be extended to the solution of eigenequation (1) 
with a potential function U(x, m), which can be expanded in a perturbation series in the 
parameter q such that 

U(x,  m )  = U'O'(X, m) + qU'l)(x, m) + q2U(2'(x, m )  + ' ' + qNU"'(x, m) (8) 

where U'O'(x, m) is one of the six Infeld-Hull factorisation types. 

~ ( x ,  m )  = ~ " ' ( x ,  m )  + ~ K ( ' ' ( x ,  m) + q 2 ~ " ' ( x ,  m)+ * + q N ~ ( N ' ( ~ ,  m) 

L(m) = L'O'(m) + qL"'(m) + 7/2L'2'(m) + ' ' ' + q L (m) 

The procedure amounts to finding associated ladder and factorisation functions 

N (NI (9) 

in such a way as to satisfy (3) up to a given power N of the parameter q. Once the 
perturbed U(x, m), K(x, m) and L(m) functions are known, the perturbed problem (up 
to the Nth  order) may be handled in the same way as the exact factorisable (unpertur- 
bed) problem. Of course, specific expressions for the perturbed ladder and factorisa- 
tion functions correspond to each type of factorisation associated with the unperturbed 
potential. 

From the comparison of equations (1) and (3), it is easily shown that the necessary 
and sufficient condition to be fulfilled by the required U"'(X, m), K"'(x, m) and 
~ " ' ( m )  is 

d 1 K'"' (x, m + I)K"-"' ( x ,  m + 1) + - ~ " ' ( x ,  m + 1) + ~ " ' ( m  + 1) = - ~ " ' ( x ,  m )  
V = O  dx 

1 K y x ,  m)K'N-Y'(X, m)--KK""(x, m)+L"'(m) = -U"'(X, m). 

N 

(10) 
d 

u = o  dx 

N 

These equations are solved recursively; i.e. when considering the determination of 
U(N' ,  K'N' and it is assumed that all the K'"' for Y = 1,2, , . . , N - 1 have already 
been found. The finite difference aspect of equation (10) determines the m dependence 
of the functions while its differential aspect determines their x dependence. 

2.3. Finite difference treatment of the factorisability condition 

In the present paper, the solution of the factorisability equations (10) is re-examined 
without introducing any restricting condition on the m dependence of the K"'(x, m), 
L"'(m) and U"'(X, m) functions. In order to use the finite difference calculus, it is 
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convenient to introduce the usual first difference A and mean M operators for 

AF(m) = F ( m  + 1) - F ( m )  M F ( m ) = i ( F ( m  + l ) + F ( m ) ) .  (11) 

Then, the difference differential equations (10) can be rewritten 

d 
dx 2A(K"'(x, m)K"'(x, m ) )  + 2M- K"'(x, m )  

N-1 

= -A(  L"'(m) + 1 K(" ( x ,  m)K(N-Y' ( x ,  m ) )  (12a) 
V = l  

N-1 

X "= l  

d U"'(X, m )  = (b-2K'O'(x, m ) )  K"'(X, m )  -L"'(m) - K'"' ( x ,  m)K"-"' ( x ,  m).  

The first equation (12a) is used to determine the ladder and factorisation functions 
K"'(x, m )  and L"'(m). Once they are known the required potential functions 
U"'(X, m )  are given by ( 1 2 b ) .  

Let us first consider the x dependence of equation (12a) and assume that the 
perturbed ladder function can be written 

where, for each type of factorisation, the K ( X )  and y ( x )  functions have to be found such 
that both sides of equation (12a) can be identified on the finite basis of the ( ~ ( x ) ) " .  A 
sufficient condition is that dK"'/dx as well as the products K(o'K(N' and K'"'K"-"' 
can be expanded as polynomials in the new variable y ( x ) .  When this condition has been 
fulfilled, by equating the coefficients of y u  in both sides of equation (12a), one obtains 
recursive finite difference equations allowing the determination of the -yi?'(m) and of 
L"'(m). Since these finite difference equations are of the first order, each solution 
yi"(u = 1, S ,  -t- 1) (or L"'(m)) involves one arbitrary constant denoted ki?' (or kdN' 
for L"'). The associated potential function U"'(X, m )  is given by (12b) and, through 
the K(N'  and L'N' functions, involves the free constants, k?', to be adjusted in order to 
match the total factorising potential, U(x,  m ) ,  with a given physical potential function, 
V(X, m).  

Owing to the above condition on the x dependence of the functions K"', it is easily 
seen that U"'(X, m )  is a finite series of powers of y ( x ) .  Consequently, the perturbed 
ladder operator method can be applied to physical problems leading to the solution of a 
wave equation (1) with a potential function V(x ,  m )  which can be written 

V(x ,  m ) =  U'O'(x, m ) + v V ( 1 ' ( ~ ) + q 2 V ( 2 ' ( ~ ) +  . . . + v ~ V ( ~ ) ( X )  (14) 

where U'O'(x, m )  is one of the six Infeld-Hull factorisation types and the V"'(X) are 
polynomial in y ( x )  

V"'(x) = 1 bl" ( y  ( x ) ) " .  (15) 
U 

In most problems of physical interest, the bLN' constants, which are specific to the 
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physical problem under consideration, will not involve m t. Consequently, in order to 
match V ( x ,  m) with the factorising potential U(x, m) ,  one has to resort to the 
'embedded' factorisation. This is conveniently achieved by considering the following 
embedding potential function with artificial parameter p 

(16) u ( x , m , p ) = ~ " ( x , m ) + ~ ~ ' ~ ' ( x , m = p ) +  . . .  +v N U i N )  ( x , m = p ) .  

Then, one can determine the set ( k i N ' )  of the arbitrary constants, k?'(v = 1 , .  . . N ; v  = 
0 ,  . . . S ,  + l ) ,  in terms of the set, (b"'), of the b?' from the following identification 

U"'(X, m = p ;  k"') = V"'(X; b"'). (17) 
In fact, since U"'(X, m )  is given by equation (12b) ,  this can be achieved without 

explicit calculation of the U"'(x, m) functions. Setting m = p in (12b) ,  one uses the 
following relation 

where the shortened notation K'O' = Kio'(x ,  m = p ) ,  K'N' = K"'(x, m = p ;  k"') and 

Once the set, (k"'), of the free constants of the rl"'(m) coefficients and of the L'"' 
have been expressed in terms of p and of the set (b"'), one obtains the ladder and 
factorisation functions associated with the physical problem under consideration 

L ( N ) -  P." - L ( m  = p ; k'"') has been used. 

N-1 L"'(m ; p ; b"') ( - 2K"'(x,  m)K"'- E K'"'K"-") - 2A-I&f- K ( N )  ) (20 )  
v = l  dx y = o  

where K'"' is given by (19) as a function of x, m, p and of the parameters b?' of the 
physical problem under consideration. 

Now, one can apply (up to the Nth  order of the perturbation) the usual exact 
factorisation scheme (equations ( 2 )  to (7)) with the total ladder and factorisation 
functions (9) where the K'"' and L'"' are given by (19) and (20) .  

2.4. Closed-form expressions of the perturbed eigenvalues and eigenfunctions 

The perturbed eigenvalue is (see equation (4)) 
N 

A~,,, =Lio)( j+i+&)+ Liu'(m = j + : + $ E ;  p = m ;  b"') (21 )  
u = l  

where E = +1 (or E = -1) according as the unperturbed factorisation function Lio'(m) is 
an increasing (or decreasing) function of m. 

The normalised 'key' perturbed eigenfunction $,/ is the solution of the first-order 
differential equation (6). One gets in terms of the unperturbed normalised key function 

) (22 )  
N 

*? 
4,/ =$jp' exp E 2 7' K ' " ' ( x , j + ; + h ;  p ;  b ' " ' )dx  . ( "=I  I 

t If V"'(X) would involve m such that it cannot be identified in m with U"'(X, m ) ,  one could introduce 
another additionalartificial parameter p ' then  use V'"'(x, m = p ' )  = 1" b t N ) ( p ' ) ( y ( x ) ) "  andset  p ' =  m at the 
final stage. 
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The closed-form expression of any normalised perturbed $i,,, function can be obtained 
in terms of the factorisation instruments and of the key function $ii by use of the 
recurrence relation (7) (see paper 11). 

In view of further applications, it may be useful to have at our disposal closed-form 
expressions of the normalised perturbed eigenfunctions in terms of the unperturbed 
functions. As will be shown in the following section such an expression can be easily 
derived once the products K‘”’$:2 have been expanded in terms of the unperturbed 
functions. 

Up to now the above results are general and concern all types (A, F). Let us focus 
our attention on the trigonometric type A which has not been previously treated. It 
should be mentioned that, owing to the interrelation between types of factorisation (see 
appendix l), perturbed factorisation results for type A can be used for type E. 

3. Type A perturbed factorisation 

As pointed out before, the solution of the perturbed eigenequation is performed in 
three stages. First one determines, up to the Nth  order of the perturbation, the 
perturbed ladder and factorisation functions in terms of the free constants kf’. Then, 
the set of these free constants is related to the set of the parameters b f ’  of the potential 
under consideration. Finally, one obtains (up to the Nth  order of the perturbation) the 
perturbed eigenvalues and the perturbed eigenfunctions either by use of the recurrence 
relation (7) or in terms of the unperturbed functions. 

3.1. Perturbed ladder and factorisation functions 

Owing to the expression of K“’(x, m )  (see table l), it is found that a convenient 
expression of K“’(x, m )  which satisfies the above mentioned conditions is 

Making use of this expression and of equation (12a) ,  then equating the coefficients of 
y “  =[cos a ( x  + p ) ] “ ,  for 1 c U S SN + 1, in both sides of equation (12a) ,  one gets the 
following finite difference equation allowing the determination of the y:?’(m) 

( 2 m + 1 + v ) y l N ’ ( m + 1 ) - ( 2 m  - l - v ) y i N ’ ( m )  

= -2dAyi’v+\(m)+2(~ + l)Myi’V,\(m)-Awi”(m) (24 )  

where the wLN’(m) originate from. the preceding orders of the perturbation and are 
defined by 

N-l  

” = l  v = o  
1 ~ ‘ ” ’ ( x ,  ~ ) K ( ~ - ” ( x ,  m )  = a’ 1 wLN’(m) [cos a(x + p ) ] ” .  (25 )  

The upper limit of U on the right-hand side of (25 )  is the maximum value of 

It should be noted that while at first order N = 1, the upper bound SI involved in 
K‘l’(x, m )  can be arbitrarily chosen, this is not true for the other SN. Indeed, owing to 
the value of the upper bound in (25) ,  it is easily inferred that SN must satisfy the 

(s, + S N - V  + 2). 
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following condition: 

SN L max ( S ,  + SN-” + 1 ) .  

Starting from U = SN + 1, the finite difference equation (24)  is solved recursively, 
reducing the integer v stepwise down to 1. Thus, when tackling the determination of 
y;”, the yLy\ and 7;:; are already known. After multiplying both sides of (24)  by 
( 2 m  + v - 1 ) ! ! / ( 2 m  - v - l ) ! !  one obtains the following complete first-order linear 
difference equation 

( 2 m  + v - l ) ! !  
( 2 m  - v -  3 ) ! !  r t”(m) A 

( 2 m  + U  - l ) ! !  
( 2 m - v - 1 ) ! !  

- - [ -A(~ l? (m)+2dy“ , \ (m) )+2(1  + v ) M Y L ? ~ ( ~ ) ]  (27)  

where ( 2 n ) ! !  = (2n) (2n  - 2 )  . . , 6  X 4 x 2 and (2n  + l)!! = (2n + 1)(2n - 1 )  . . , 5  x 3 X 1. 
By symbolic multiplication with A-’ (Jordan 1965) one obtains 

where k;” is an arbitrary constant which does not depend on m, and 

2 ( 2 m + v - 3 ) ! !  
( 2 m  - 0  - l ) ! !  fI”(m) = ( U W ; ? ( ~ )  + 2 d ~ y i y \  (m) + ( 2 m  - l ) ( v  + l ) ~ i T i ( m ) ) .  (29)  

From (25)  

with to = max(1, v - 1 - S N - y )  and tM = min(S, + 1, v + 1). 

of the recursive solution of (28)  is 
At the first order N = 1 of the perturbation, since w c ’ ( m )  = 0, the starting function 

When equating the x-independent terms in ( 1 2 a )  one obtains 

AL“’( m ) = -U 2( 2d (m ) - 2Myl” (m  ) + A w 6”’ (m )) . (32)  

By symbolic multiplication with A-’, one obtains 

(33)  L “ ’ ( ~ ~ ) = - ~ ~ ( ~ ~ ” ( m ) + 2 d ~ \ ” ( m ) + y ~ ” ( m ) - 2 A  -1 7 2  ( N )  (m + l ) + k i N ’ )  

where kiN’ is an arbitrary constant which does not depend on m. 
Keeping in mind that A-’y iN) (m + 1)  has already been calculated in order to obtain 

y iN)(m) ,  the determination of L”’(m) does not need any further ‘finite integration’. 
Once the ‘factorisation instruments’ K“’(x, m )  and L”’(m), involving the arbitrary 

constants k p ) ( v  = 1 ,  N ;  v = 0, S,  + l ) ,  have been obtained, one can apply the perturbed 
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factorisation scheme to the solution of the following eigenequation: 

d2 U 2[ (m - ;)( WI + i) + d 2  + 2 d COS U (X + p ) ]  + V‘”’ (x) +Ai,,,) $jm = 0 (34) 
sin2 a (x + p )  v e l  

with 
S”+l  

V‘”’ (x) = -a2  1 b t )  [COS U(X fp)]”. 
v = l  

(35) 

In order to express the total factorisation instruments K ( x ,  m) and L(m)  as well as 
the factorising potential U(x, m) in terms of the physical data, one has to determine the 
set (k”’) of the free constants in terms of the set (b (N) ) .  Making use of expressions (23), 
(25) and (35) together with equation (18), and equating the coefficients of [cos a ( x  + 
p ) ] ”  in both sides of (18), one can write 

(2p - 1 - v ) y l N ’ ( p ) + 2 d y l ~ : ( p ) 4 ( ~  + l ) y i % ( p ) + ~ ~ ~ ) ( p ) =  blN).  (36) 

Using (28) and (33), one obtains 

1 (NI khN’ = 2(A- y2 (m + l))m=G. 
(37) 

This relation gives the k:”(v = 0, S ,  + 1) in terms of p and of the set ( b N )  of coefficients 
of the physical potential. 

Finally from equations (23), (28), (33) and (37) one obtains the ladder and 
factorisation functions K”’(x, m ; p ; b“’) and L”’(m ; p ; b”’). Now, using the 
factorisation instruments, closed-form expressions of the perturbed eigenvalues and 
the normalised associated eigenfunctions of the eigenequation (34) follow at once from 
the results of § 2. 

3.2. Perturbed eigenfunctions 

Since q is the perturbation parameter, the exponential in the expression (22) of the key 
perturbed function t,bii can be expanded in a series of powers of q. The associated 
coefficients are polynomials in cos a ( x  + p )  which can easily be obtained from the 
expression of K‘”’ (see equation (23)). It should be noted that, in a perturbation 
calculation to order N, the truncation up to q N  power may be done only after the 
normalisation (up to q N )  of the function. For the second-order perturbed key function 
( N  = 2), one obtains the following expression 

s,+1 
+jj = % i ( q ) + j q  1 + c cosu a ( x  + p )  

u = l  

where gi(q) is the normalisation constant, to = max(1, v -SI - l ) ,  tM = 
min(v - 1, S I  + 1), 
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C,(j) is the normalisation constant of the zeroth-order key function and we have used 
the abbreviated notation y:”’ = yj”’(m = j + q ~  +z; p = j ;  b”’). 

Since the perturbed factorisation scheme preserves the normalisation of the eigen- 
functions, it follows that all the perturbed functions are normalised once the ‘key’ has 
been normalised. 

Using the recurrence relation (7) and retaining the terms up to T ’ ,  one obtains 

1 1  

4,,J-. = 4 , , ( 2 ~ a ~ j ) - ” ~ { [ 1  -:N:” - 4 ~ j ”  + 3 ~ j ~ . j ’ , ) ~ ] ( ~ ‘ O ’ ( j )  + ~ “ ’ ( j  + 1)) 

+ (1 - $Njl’)(K‘l’(j) +K‘l’(j + 1)) + P ’ ( j )  + P ’ ( j  + 1)) (40) 

where 
K‘”’ ( j )  = K‘”’ (x,  m = j ;  p = j - E ; b‘*’) 

~ j ” )  = ( ~ ‘ ” ’ ( j  + ; + : E )  - ~ “ ) ( j  + i-3E))/(2Ea2j) 

and 
L ‘ ” ’ ( j + ; + $ E )  =L‘”’(m = j + $ + $ ~ ;  p = j - E ;  b”’). 

When perturbed eigenfunctions +,m far from the ‘key’ are required, it is advisable to 
use the following alternative procedure which provides the perturbed eigenfunctions in 
terms of the unperturbed functions. Let us set 

(41) (1’ 2 (2’ N (N) 
+jm = +:: + v + i m  + 4 i m  + * * + +jm 

with 

4j2 ( X  = 1 CY j:)s (m 4i?s, m (x ) and ajYs(m) = s,,o. (42) 
S 

Since the perturbed functions +bjm as well as the unperturbed functions +: are solutions 
of equation ( 5 )  with ladder functions K(x,  m) and K‘O’(x, m) respectively, it follows that 
at each order N of the perturbation one can write 

N 
C ajyJ(m + 1 ) ~ j ? s ( m  + I ) + c s , m ( X ) -  1 ~ j ~ - ” ’ ( m  + 1) 1 aj’t;’sCm>4j”!s,m(x> 

S u = o  S 

(44) 
v = o  s 

The first members of (43) and (44) involve only the functions +j’?s,m and 4‘jO+)s,m+l 
respectively; consequently it can be inferred that (42) holds if the following equations 
are satisfied: 
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After substituting 
the equations (43) (or 
both sides, one finds 

for K ( v ) $ ~ P ~ + l  (or K(’)+g) from expressions (45) (or (46)) into 
(44)) and equating the coefficients of the $2 (or of the $;PAT1) in 

N E s  (m + l ) a  (m + 1 )  - NI”’ (m + 1 )  j?; (m ) 
N-1 

= 1 (NIN-”’ (m + l ) a  :,?s ( m )  - 1 Aj?T‘)( j + s - t, m + 1). j$\-t (m + 1 ) )  
U = O  f 

(47) 
NjO!, (m + 1)a;Y: (m) - NI”’ (m + 1)ajY; (m + 1 )  

N-1  

v=o r 
= 1 ( NjN-”’ ( m  + l)a$L(m + 1) - 1 Bjy:v’(j + s - t, m)a:,?-r(m)).  

Multiplying the first equation by Njo’ (m  + 1 )  and the second equation by 
and adding them together, the expression for a;?: (m) follows 

a;+. ( N ) ( m ) =  C;, 1 (NIN-”(m+1)(NiO’(m+1)ai”:;(m)+NIO,’,(m+l)aj”:,(m +1)) 

(m + 1 )  

N-1 

”=O 

For s = 0, one can determine the a;”(m) coefficients from orthonormalisation consi- 
derations. Indeed, we must impose 

When substituting for t,hjm from (41) into the above equation, one gets the following 
condition to be satisfied at each order N of the perturbation 

Since the unperturbed functions $E are already orthonormalised, one gets the 
following expression for aiN’ (m) 

It should be noted that ai”(m) = 0. 

4. Illustrative application 

Perturbed type A eigenequations occur in many problems of quantum mechanics and 
are frequently encountered in atomic and molecular physics. With the proper choice of 
the set of parameters involved in the type A kernel potential function, one finds the 
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perturbed eigenequations of either the generalised spherical harmonics Y ;I: (which for 
y = z reduce to the usual associated spherical harmonics Y;”)  or the symmetric top 
eigenfunctions akk or, more generally, the hypergeometric functions F ( a ,  p ;  y ;  x).  
The main results concerning the exact factorisation of the Yr.,, and F ( a ,  p ; y ;  x )  
functions are summarised in § A1.2. 

Let us apply the method to the determination of perturbed type A eigenvalues and 
eigenfunctions up to the second order of the perturbation (N  = 2 )  and, in order to avoid 
over intricate results, let us choose the lowest values S1 = 1 and S2 = 2S1 + 1 = 3 (see 
equation (26)) .  

1 

4.1. Perturbed ladder and factorisation functions 

4.1.1. First order of the perturbation N = 1. For S1 = 1, the ladder function becomes (see 
equation (23) )  

~ “ ’ ( x ,  m )  = a sin a(x +p)(y:“(m)+y$*’(m) cos a(x + p ) )  (52)  
where 7;” and yi2’ have to be found. 

From (31)  

k$*) 
( 2 m  + 1)(2m - 1)(2m - 3)’ 

In order to obtain y\’), one has to calculate 
(4d A-’y$l’(m + 1))  (see equations (28)  and (29))  

y?’(m) = (53)  

A-’f\’’(m + 1)  which reduces to 

d 
( ( 2 m  + 3)(2m + 1)(2m - 1) 

A-’f\’)(m + 1 )  = 4ki1)A-’ (54)  

One can apply the method of decomposition into partial fractions (Jordan 1965) and 
introduce the ‘psi’ or ‘digamma’ function + ( z )  = d(ln r ( r ) ) /dz  which satisfies the 
following functional relations (Abramowitz and Stegun 1965): 

A $ ( z )  = 1 / z  
( 5 5 )  

One obtains 

Finally 

The factorisation function L‘”(m) associated with K“’(x, m )  is given by the 
equation (33) .  It should be noted that A-ly2 ( m  + 1)  is already known (equation (54) ) .  
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One finds 

k'l'd + k t ' ) .  ( 5 8 )  k y ' [ m ( m  - 1 ) - 3 d 2 ]  ~ " ' ( m )  = -a2 ( + 
2 ( 2 m  + 1)(2m - 3 ) m ( m  - 1)  2 m ( m  - 1) 

4.1.2. Second order of the perturbation N = 2. One has first to calculate the increments 
w;"(m) arising from the first-order contribution (K"')' (see equation (30)) .  

The determination of the y?)(u = 1 to 4 )  of K"'(x, m )  (see equation (28)) is carried 
out in the same way as for the first order, but now one has to resort not only to the 
digamma function + ( z )  but also to the polygamma functions +'"'(z) such that 

After some algebraic manipulations, one gets 

1 where to = max(2, v); ro = max(1, z t ) ,  rM = min(2, t - 1).  
The expressions for the Pii and Qii coefficients are reported in appendix 2. 
The perturbed second-order factorisation function becomes 

(61)  -1 ( 2 )  L(') ( m ) = -a 2( ( y ( m ) ) 2  + 2 d y  \" ( m ) + y i2) ( m ) - 2 A y 

In fact, when performing the calculation of the y;? for K'2' (x, m), all terms in L"'(m) 
have already been obtained. In particular A-'y?' is already known. After some 
rearrangements one obtains 

( m + 1)  + k b"' ) . 

4 4 O M  

L"'(m) = -a2 kb2' + 1 k f ' R , ( m )  + 1 T f ( m )  kl"k:!)u) (62)  ( u = l  f = 2  u = u o  

where vo = max(1, i t ) ,  vM = min(2, t - 1) .  
The expressions for the coefficients Ri and are given in appendix 2. 

4.2. Perturbed eigenvalues 

One can now determine the eigenvalues of equation (34)  with 

V" ' (x )=-a2[b1 cos a ( x + p ) + b 2 c o s 2  a ( x + p ) ]  

V ' 2 ' ( ~ ) = - a 2 [ b 3  COS a ( x + p ) + b ~ c ~ s ~ a ( x + p ) ] .  
3 (63)  

Using (37)  one obtains for the first order of the perturbation (N  = 1)  

and for the second order of the perturbation ( N  = 2 )  

k f )  = ( 4 ~ ' -  1 ) ( 4 p 2  - 9)b4- 2 ( 4 p 2 -  1)b; 

ki2' =q(8p2 - 3)db4 + 8 p ( p 2 -  l ) b 3  - 6pblb2 

ki2' = [$(4p2 - 1 )  + d2]b4 +4p& -ab; - 6: 

kj2' = 5db4 + 2pb3 kh2) = -zb4. 
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The perturbed eigenvalues follow from (62) ,  (64) ,  (65)  and (21):  

Ai, = a 2 ( A j 0 ' + A ~ ~ + A ~ ~ )  

with 
Ajoj = ( j  + $ E ) 2  

J (  1 - 4 m 2  - 4 d 2 )  + 4 8 m  ' d 2  
J J ( J  - 3 )  

2853 

(66)  

[-3J2+ 18J-32+4(3J - 4 ) ( m 2  + d 2 ) - 8 0 m 2 d 2 ]  2b3md 
A? = J ( J  - 3)(J  - 8) 

{3J(J - 8 ) [ J 2 -  1 6 J + 2 4 + 8 ( 1 0 - J ) ( m 2 +  d 2 )  64 
8 J ( J  - 3)(J  - 8) (J  - 1 5 )  

+ 
+ 16(m4+ d 4 ) ] +  64m2d2[9J2  - 1023 

+ 380 + 1 O( 10 - 3 J ) ( m  + d 2 )  + 140m 2d2]}  

+ b' [ J 3 - 1 2 J 2 ( m 2 + d 2 ) + 1 6 ( 5 J + 1 2 ) m 2 d 2 ]  
~ J ~ ( J  - 3 )  

[J2(4 - 3 J )  + 20J2(m2 + d 2 )  - 16(7J + 24)m2d2]  8blb2md + 
J 3 ( J  - 3)(J  - 8) 

{ J 6  - 15J5 + 68J4 - 48J3 b: + 
8J3(J  - 3)3(3 - 1 5 )  

- 8J3(3J2  - 13J + 6 0 ) ( m 2  + d 2 )  + 16J3(5J + 33)(m4 + d 4 )  

+64m2d2[J2(25J2-87J+ 180)+ 18J2(5 - 7 J ) ( m 2 + d 2 )  

+36(17J2+57J - 180)m2d2]}  

whereJ=4( j+ i~+ : ) ( j+ :~ - : ) .  
As expected the expressions of the Ai:' are symmetric functions of m and d (see 

appendix 1 )  and depend on j via J = 4 j ( j  + 1)  for class I problems (or J = 4 j ( j  - 1)  for 
class I1 problems). 

For the case of the perturbed spherical harmonics ( d  = 0, 1 = 1 ,  E = +l) ,  the expres- 
sion of Ai, reduces considerably and is amenable, after change of notation, to known 
formulae (for bl = b3 = b4 = 0,  see for instance, Abramowitz and Stegun (1965);  for 
b2 = b3 = b4 = 0 see Winjberg (1974)).  

4.3. Perturbed eigenfunctions 

In order to avoid rather long expressions, we limit ourselves to the first order of the 
perturbation with S1 = 1. As an example, let us consider the determination of the class I 
( E  = +l;  0 6 a(x  + p )  c T) eigenfunctions of the eigenequation (34)  with the potential 
V"' (equation (63)) .  

The ladder function is 

ad 
sin a ( x  + p )  K ( x , m ) = a m  c o t a ( x + p ) +  + a  sin a(x  +p)[y:" +yi? cos a ( x  + p ) ]  (67)  
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where 

[m(m -1 ) -3 / .~~]db2  # = ( 4 g 2  - 1)bz 
y(ll) = Fbl + 

2 m ( m  - 1) m(m - 1) (2m + 1) (2m - 3 )  ( 2 m  - 3 ) ( 4 m 2  - 1)‘ 

The normalised key function is (see equation (38 ) )  

+-( 1 --+?) bi bzd cosa(x+p)---  2 ( 2 j + 3 )  b2 cos2a(x+p))  ( 6 8 )  
(]+I) 2 ( 2 / + 3 )  

where the unperturbed key function $:;) is given by (39 )  with 

( 2 j + l ) !  
”(’)= (r(i + d + l)r(j - d + 1)  

Starting from $j j ,  one can generate, stepwise, the whole set of the $im eigenfunctions 
using either the difference differential equations ( 5 )  or the recurrence relation (7). 

In  order to obtain closed-form expressions of the $jm eigenfunctions in terms of the 
unperturbed $;: functions, the critical step of the calculation is to expand the term 
K(’)$:2, i.e. sin a(x +p)$ j :  and cos a ( x  + p ) $ E ,  in the basis of the 4;:. Due to the 
correspondence between type A and type E eigenequations which interchanges the 
roles of the quantum numbers j and m, the expansions required follow from the 
recurrence relation (7) for types A and E (see equations (A7)). 

Using the results of § 3, one obtains 

b 2 { ( j 2 - d 2 ) [ ( j - 1 ) 2 - d 2 ] ( j 2 - ~ 2 ) [ ( j -  l)’-m 2 3 )  1 / 2  
( 1 )  a j - 2  ( m )  = 

It should be noted that, as expected, the ajYs(m) coefficients are symmetric functions of 
m and d. Let us point out that expression (69 )  when d = O  and bz=O reduces 
considerably and gives again known results (see, for instance, Kusch and Hughes 1969). 

2(2j - l ) ’ j ( j  - 1)[(2j  + 1)(2j - 3)]”’ 

5. Conclusion 

Finally, if we compare this work with papers I and 11, we can say that roughly they 
involve dual points of view of the perturbed factorisation treatment. Indeed, in papers I 
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and 11, when building the factorisation instruments, we have adopted the Infeld-Hull 
suggestion and assumed for these functions the traditional polynomial m dependence. 
Then the x dependences of the ladder function K ( x ,  m) and the factorising potential 
V(x,  m) follow from the factorisability condition. Although this point of view was 
suitable for treating the radial cases (types B, C, D and F), when considering the 
trigonometric cases (types A and E) we obtained very intricate expressions for the 
factorising potential function V(x, m), In the present paper, it is the x dependence of 
the functions which is treated first, then the m dependence is obtained from the solution 
of the factorisability condition. It should be noted that this way of proceeding is not 
merely a matter of computational convenience; in fact the use of finite difference 
calculus enables one to overstep the narrow limits of the usual polynomial dependence 
in the quantum number m of the perturbed ladder operators. Let us mention that this 
procedure, which can be applied without any restriction to all factorisable kernel types, 
allows one to recognise at once if a given eigenequation involving a physico-mathema- 
tical potential is amenable to perturbed factorisation. 

An additional advantage of the present method is that the rather tedious part of the 
calculation carried on in paper I, which ensures that the given potential V(x ,  m )  
matches the factorising potential V(x,  m), is no longer necessary. 

As a by-product of the computation of the perturbed functions, it has been shown 
how the existence of an interrelation between factorisable type A and type E 
eigenequations leads to a family of recurrence relations. These relations are of 
particular interest for analytical computation of matrix elements. Results concerning 
all types of factorisation will be given elsewhere. 

Appendix 1 

A l . l .  Recurrence relations for type A eigenfunctions 

Let us consider the type A eigenequation 

d2 a 2 ( m 2 + d 2 - + + 2 d m  C O S U ( X + P ) )  

sin2 a (x + p )  

and let us set 

where g i '  is a normalising factor. Following the argument given in § 9-1 of Infeld and 
Hull (1951), it is easily seen that gj  does not depend on m. Then the type A 
eigenequation (Al )  becomes a type E eigenequation 

1 1  whereA = -ia; P = i r / 2 a ;  1 = j + T E  -5 ;  q ( m ) =  -adm and E = +1  (or E = -1) accord- 
ing to the class I (or class 11) for type A. 

The type E eigenfunctions 4:; ( z )  are solutions of the pair of difference differential 
equations ( 5 )  with the associated ladder function which is defined in table 1. Using the 
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changes of variable and function defined by equation (A2), one obtains 

where 

1 
1 

N : ( m ) = - [ ~ ~ ( l ~ - m ~ ) ( l ~ - d ~ ) ] ~ / ~  

Cj(m) is the normalisation constant for type A $:2 eigenfunctions (see table 1). In 
particular, for class I problems ( E  = +1) 

These equations (A4) generate eigenfunctions $2 with a given value of m step by step, 
downward or upward, and allow the determination of any solution $i"+',,, from the 
knowledge of $E. 

On the other hand, since the $:? are solutions of a type A factorisable equation 
(Al) ,  they are also solutions of the following difference differential equations (see 
equation (5) and table 1 for type A): 

+- $2 =N;(m)$j,2-1 
(A61 

" )  (a (m- i ) co t  a ( x + p ) +  ad 

ad 

s i n a ( x + p )  dx 

s i n a ( x + p )  dx 
( a ( m  +$) cot a ( x  + p )  + 

where 

A g m )  = [ a ' ( j  + $ E  -;+ m ) ( j  + ; + $ E  - m)I1I2. 

Using both the equations (A41 and (A6), one finds the following recurrence relations 

C O S U ( X + ~ ) $ ~  =Aj[(1+1)2-m 2 ] 1 / 2  $/+I,,,,-- ( 0 )  $E +Bj(12-m ) $ j - l , m  (A7) 

sin a (x + p )  r~jjil 

2 1/2 (0)  md 
1(1+ 1)  

1 / 2  (0 )  =A,[(/ + m +2)(1+ m + I)] $j+l,m+l 
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with 

It should be noted that the arbitrary constants a ,  d and p may be real or complex. The 
associated range of x has to be such that the ladder function K(x ,  m )  has no singularities 
more severe than first order. Thus, setting a ( x  + p )  = x +iy,  allowed ranges for x are 
defined by the following conditions 

o < x < n  i f y = O  

o < y < m  
--CO < y <CO 

if y # 0 and x = 0 

if y # 0 and x = *&2n + 1)n. 

A1.2.  Some particular type A eigenfunctions 

Al .2 .1 .  Associated spherical harmonics. 

1 
Y;" (e, 4 )  =-e"' (sin e)-'/2$l,(e) 

J G  
$(,(e) is a class I ( E  = +l) solution of (A l )  with x = 8; O s  0 s .n; a = 1; d = p  = 0 and 
j - m = 1 - m = positive integer or zero. 

A1.2.2. Generalised spherical harmonics. 

$(e) is a class I ( E  = +1) solution of (Al )  with x = 8; O s  0 s T ;  a = 1; d = p = 0 and 
j+l+ y-1/2; m + m  + y-1/2; j - m  = 1 - m  =positive integer or zero. When y =%, 
one again obtains the usual spherical harmonics Y;". 

1 

A1.2.3. Symmetric top functions. 

B i k ( a ,  p, y )  = eimad',k(p) eiky 

where cy, p, y are the three Euler angles 

$,,(p) is a class I ( E  = +1) solution of (A l )  with x = p ;  a = 1; p = 0; d = k. 

of equation (Al )  is possible with quantum number either m or k = d. 
Since both differences j - m and j - k are positive integers or zero, dual factorisation 
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A1.2.4. Hypergeometric functions. The differential equation satisfied by the hyper- 
geometric function F(a,  p ;  y ;  x )  is (Gradshteyn and Ryzhik 1980) 

d2 
( dx 

x ( l  -x)  y+ [ y  - (a  + p  + l )x]  

(cos y ) - a - B + Y - 1 / 2  $ ( y ) ,  one obtains - y + l i 2  Setting x = sin2 y and F = (sin y )  

It is easily seen that equation (A8) can be rewritten 

( m 2 +  d 2 - i + 2 m d  cos 2 y ) +  (a - p ) 2 ) + ( y )  = 0 (3-m (A91 
d2 4 

with 

m = i ( a + p - I )  d = i ( 2 y - a - P - l ) .  

This is a factorisable type A (Class I) eigenequation with a = 2 ;  p = 0.  The quantisation 
condition requires j - m = v =positive integer or zero. The eigenvalue is 

A = L ( j + l ) = L ( m + v + 1 ) = 4  ( a  - ; + v) 2 .  W O )  

On the other hand, the eigenvalue in (A9) is seen to be 

A = ( a  - p)’. ( A l l )  

From equations (A10) and (A1 1) either v = -a or z! = -p. We thus rediscover the well 
known condition for finite hypergeometric series: at least one of a, p is a non-positive 
integer. 

Appendix 2 

A2.1. Expressions for the coeflcients Pij(m) and Qii(m) of the perturbed second-order 
ladder function K”’(x, m )  

A = 4 m ( m  - 1). 

-5d(2A - 9 )  
2(A - 3)(A - 15) P 4 4  = 1 P 3 3  = 1 P 3 4  = 

- 2d(2A - 1) 
A ( A  -8)  

3[10d2(A - l ) - A ( A  -8)l 
2A (A - 8 ) ( A  - 15) p 2 4  = P 2 2  = 1 p2.3 = 

- 3d 
P 1 1 =  1 PI2 = - 

A -3 

5d(5A - 26 - 28d2)  
4(A - 3)(A - 8)(A - 15)’ P I 4  = 

3 
Q44 = ~ - 3  5 

Q33 = pj 

10dz-A + 3  
(A - 3)(A - 8) p 1 3  = 

-3d(7A +15)(A - 8 )  
Q34 = (A - 3)’(A - 15)(A + 1) 
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4d2(68A3 + 159A2 - 378A - 405)  - A2(15A2 + 2A + 5 1 )  
4A2(A - 3)*(A - 15)(A + 1 )  Q24 = 

- d(5A + 12)  8d2(7A +24) -5A2  
Q12= A z ( A  - 3 )  Q13 = A '(A - 3)(A - 8) 

d [  -36d2(17A2+57A - 180)(A + 1 )  +A2(91A2-6A -225) ]  
4 A 2 ( A  + 1)(A -3)3(A - 15) 0 1 4  = 

A2.2. Expressions for the R j ( m )  and q ( m )  coeflcients o f  L'2'(m) 

A = 4 m ( m  -1 ) .  

&(A -8)  +5d2(10-  3A)+70d4 
R 4 = -  A ( A  -3)(A -8)(A -15 )  

d(3A - 4 - 2 0 d 2 )  12d2-A 2d 
R3=- R z = -  RI=--. 

A (A - 3)(A - 8) 2A(A - 3 )  A 

:A3(5A + 33)+9d2A2(5 -7A) + 18d4(17A2+57A - 180) 
A 3(A - 3)3(A - 15)  

T4 = - 

4d2(5A + 12)  - 3A2 
T2 = - 4d[5A2-4d2(7A +24)]  

T3 = - 
A 3(A - 3)(A - 8) 2A 3 ( ~  - 3 )  
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